
What formalized mathematics is all about?

Adam Topaz

University of Alberta

December 2, 2024



It is about encoding mathematical

definitions, theorems and proofs

using a formal language

so that they can be

checked, generated, processed, and stored

using a computer.



Tools

Formal methods have been used in computer science for a while
to write specifications for hardware and software, and to verify
that specifications are met.

In practice this involves using both automated reasoning tools,
and interactive tools like proof assistants.

This talk will focus on a particular proof assistant called Lean,
developed primarily by L. de Moura, originally at Microsoft
Research, but now at AWS and the Lean FRO.

Other proof assistants exist: Isabelle, Mizar, HOL Light, Coq,
...



Motivation

▶ Formal verification of theorems.

▶ Digital Libraries of Mathematics.

▶ Various collaborative aspects.

▶ Helps in taming complexity.

▶ Mathematicial artifacts become digital.

▶ This is just the beginning!



Motivation

Theme: Scale



Now I’ll move to the blackboard.



Now I’ll move to the blackboard Lean editor.



mathlib

▶ Lean4’s primary mathematics library.

▶ Currently ∼ 1.5 Million lines of code.
▶ Vast majority is formalized mathematics.
▶ Some infrastructure code, tactics, etc.

▶ Over 300 contributors, ∼ 30 maintainers, ∼ 50 reviewers.



mathlib

Algebra, AlgebraicGeometry, AlgebraicTopology, Analysis,
CategoryTheory, Combinatorics, Computability, Condensed,
Control, Data, Deprecated, Dynamics, FieldTheory,
Geometry, GroupTheory, InformationTheory, Lean,
LinearAlgebra, Logic, Mathport, MeasureTheory,
ModelTheory, NumberTheory, Order, Probability,
RepresentationTheory, RingTheory, SetTheory, Std, Tactic,
Testing, Topology, Util,



mathlib docs and search

▶ Documentation webpage

▶ Loogle!

▶ Moogle!

▶ Lean Search

https://leanprover-community.github.io/mathlib4_docs/
https://loogle.lean-lang.org/
https://www.moogle.ai/
https://leansearch.net/


mathlib

▶ Maintain compatibility across all subcomponents.

▶ Promote the right level of abstraction.

▶ Organize concepts into hierarchies.

▶ Enable formalization of research-level mathematics.



Collaboration

Lean/mathlib opens new avenues for mathematical
collaboration at scale.



Collaboration

▶ The Liquid Tensor Experiment: ∼ 12 main contributors,
∼ 30 in total.

▶ The Sphere Eversion Project: ∼ 3 main contributors, ∼ 15
in total.

▶ The Polynomial Freiman-Ruzsa Conjecture: ∼ 30
contributors in total.

▶ The prime number theorem and more: over 20 contributors.

▶ The Formalization of FLT: over 30 contributors.



Collaboration

In essentially all cases, these projects had a few “leaders,” a
smaller group of core contributors, and a much larger group of
casual contributors.

T. Tao:
One notable feature of proof formalization projects is
that they lend themselves to large collaborations that do
not require high pre-established levels of trust.



Blueprints

One of the most effective methods for facilitating such projects
is via the use of blueprints, which have become essentially
standard practice for large Lean formalization projects.

LTE, PNT++

https://leanprover-community.github.io/liquid/
https://alexkontorovich.github.io/PrimeNumberTheoremAnd/web/


This new paradigm allows work to be widely distributed across
many contributors.

▶ Contributors with no Lean experience can contribute to the
blueprint.

▶ Contributors with Lean experience can contribute to the
formalization.

▶ Primary contributors can set up skeletons for various
targets.

▶ Casual contributors can focus on targets within their
interests and ability.



Spec-driven development

Algorithm:

1. Isolate a desired target (defn, theorem, . . . )

2. Isolate an initial specification (spec) for the target.

3. Break down the target/spec into parts with lower
complexity.

4. Repeat the above, with each new part acting as the target.

Key is a liberal use of sorry.



universe u

def AbsoluteGaloisGroup (K : Type u) [Field K] :
Type u := sorry

variable (K : Type u) [Field K]

instance :
TopologicalSpace (AbsoluteGaloisGroup K) :=

sorry

instance :
CompactSpace (AbsoluteGaloisGroup K) :=

sorry



def FiniteGalExt
(K : Type u) [Field K] :
Type (u+1) := sorry

def FiniteGalExt.Gal
(M : FiniteGalExt K) :
Type u := sorry

instance (M : FiniteGalExt K) :
Fintype M.Gal := sorry

instance (M : FiniteGalExt K) :
TopologicalSpace M.Gal := ⊥



def AbsGal.ι :
AbsGal K →∗ (M : FiniteGalExt K) → M.Gal :=

sorry

lemma AbsGal.ι_injective :
Function.Injective (AbsGal.ι K) :=

sorry

lemma AbsGal.ι_inducing :
Topology.IsInducing (AbsGal.ι K) :=

sorry

lemma AbsGal.isClosed_range_ι :
IsClosed (Set.range <| AbsGal.ι K) :=

sorry



instance : CompactSpace (AbsGal K) := by
constructor
rw [(AbsGal.ι_inducing K).isCompact_iff]
apply IsClosed.isCompact
rw [Set.image_univ]
apply AbsGal.isClosed_range_ι



Spec-driven development

Features:

▶ Non-blocking: For example, contributors can work with the
assumption that AbsGal K is compact from the very
beginning.

▶ Promotes good abstractions, since contributors cannot rely
on implementation details early on.

▶ Allows for smoother refactors, as abstraction boundaries
are more closely followed.

▶ Allows contributors to focus on targets within their
knowledge and ability while still ensuring consistency
throughout the project.



Spec-driven development

Proof assistants already eliminate much of the accidental
complexity in a piece of mathematics (imprecise and unwritten
assumptions, reference chasing, side conditions, . . . ).

We propose that proof assistants can help to tame some of the
inherent complexity in a piece of mathematics as well:

▶ Focusing on and creating abstraction boundaries.

▶ Distributing the complexity across many “subtargets”.

▶ Relying on the proof assistant to maintain consistency.

▶ Reducing cognitive load as one can focus on local context.



Spec-driven development

Work is being done now to create tools that help facilitate this
workflow.



What do we get out of formalized mathematics?



▶ (Essentially) absolute certainty that a piece of mathematics
is correct.

▶ Large libraries of digitized mathematics, consistent across
subfields.

▶ New methods for collaboration and exposition, at scale.

▶ New ways to distribute mathematical work, and tame
complexity.



More generally, proof assistants encode mathematical artifacts
in a digital form which can be:

▶ Stored

▶ Distributed

▶ Generated

▶ Processed



I think this paradigm fundamentally changes the relationship
between a mathematician and the mathematical objects
themselves.

It makes mathematical objects tangible, yet still a product of a
mathematician’s creativity.

Before we have seen how it can facilitate mathematical
collaboration at scale. But it goes further.

Namely, the digitization of mathematical artifacts opens up
completely new opportunities to obtain mathematical insight by
processing and studying such objects at scale.



Thank you for listening!

The Lean community welcomes all interested participants,
especially mathematicians, regardless of their experience with
the language itself or other formalization experience.

If you find any of this intriguing, then please visit the
community webpage. We have many tutorials (NNG) that helps
mathematicians get started with the Lean language itself. Our
zulip server is very active and welcoming to new members.

https://leanprover-community.github.io/
https://adam.math.hhu.de/
https://leanprover.zulipchat.com/

