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The Grothendieck-Teichmüller group, whose principle was originally
introduced by Grothendieck, has been a center of attention since its for-
mal introduction3 by Drinfel’d and Ihara. Classical work of Ihara, Lochak, 3 V. G. Drinfel’d. On quasitriangular

quasi-Hopf algebras and on a group that
is closely connected with Gal(Q/Q). Al-
gebra i Analiz, 2(4):149–181, 1990

Nakamura and Schneps have since developed the original program to-
wards ĜT as a possible combinatorial description of GQ. The recent
progress4 of Hoshi, Minamide and Mochizuki, on the group theoretic

4 Yuichiro Hoshi, Arata Minamide,
and Shinichi Mochizuki. Group-
theoreticity of numerical invariants and
distinguished subgroups of configuration
space groups. Kodai Math. J., 45(3):295–
348, 2022

reconstruction of various invariants of hyperbolic curves, shed a new
light on the group ĜT as an anabelian object.

The goal of this Atelier was to give a complete description of ĜT as
given by Ihara and introduce the anabelian tools in order to apprehend
the proof of the recent progress of Hoshi, Minamide and Mochizuki.
These notes give an overview of the work done during this one-day event,
see the program5 for more context and the abstracts of the talks. 5 The program and all the information

regarding this session of the Atelier can
be found here : AHGT website.

An arithmetic, combinatorial description of ĜT

The introduction of the group ĜT

The theoretical objective of the Grothendieck-Teichmüller theory, as
sketched6 in “Esquisse d’un programme”, is in broad terms, to provide 6 Alexandre Grothendieck. Esquisse d’un

programme. In Geometric Galois actions, 1,
volume 242 of London Math. Soc. Lecture
Note Ser., pages 5–48. Cambridge Univ.
Press, Cambridge, 1997b

a combinatorial description of GQ in terms of geometric invariants. The
main idea in order to achieve this is to study GQ through its action on
a certain tower {Mg,m}g,m of moduli spaces of curves.

Grothendieck-Teichmüller theory can be seen as a triangle between
arithmetic, geometry and combinatorics as illustrated below

GQ Out π1(Mg,m ⊗ Q)

ĜT

where the vertical arrow has been so far defined7 for g = 0. 7 Yasutaka Ihara and Makoto Matsumoto.
On Galois actions on profinite comple-
tions of braid groups. In Recent develop-
ments in the inverse Galois problem (Seattle,
WA, 1993), volume 186 of Contemp. Math.,
pages 173–200. Amer. Math. Soc., Provi-
dence, RI, 1995

The definition of the Grothendieck-Teichmüller group is as follows.
Let F2 be the free group on two generators x and y and F̂2 its profinite
completion. We also denote by G′ the derived subgroup of G. We
first consider the product Ẑ× × F̂2

′
endowed with the composition law8

8 This law corresponds to the Galois ac-
tion in the first line of the diagram above.

given by
(λ, f ) · (µ, g) = (λ · µ, f · F( f ,λ)(g)

https://ahgt.math.cnrs.fr/activities/ateliers/AGA24-around%20GT/
https://ahgt.math.cnrs.fr/activities/ateliers/AGA24-around%20GT/
https://ahgt.math.cnrs.fr/activities/ateliers/AGA24-around%20GT/
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where F( f ,λ) is the automorphism of F̂2 defined by x 7→ xλ and y 7→
f−1yλ f .

Definition 1. The Grothendieck-Teichmüller9 group ĜT is defined 9 This version should sometimes be called
the profinite Grothendieck-Teichmüller
group. As we will see later pro-Σ variants
can be defined and it as well as a pro-
unipotent variant which is proven to be
motivic.

as the subgroup of Ẑ× × F̂2
′

of tuples (λ, f ) satisfying the following
relations10

10 For a profinite group G and a, b ∈ G
the notation f (a, b) is to represent the
element of G defined by f by substituting
x, y to a, b.

I. f (x, y) f (y, x) = 1

II. f (z, x)zn f (y, z)yn f (x, y)xn = 1 for n = λ−1
2 and xyz = 1

III. f (x12, x23) f (x34, x45) f (x51, x12) f (x13, x34) f (x45, x31) = 1

where the last equation takes place in the profinite completion of the
pure braid group P̂5.

Theorem 2 (Ihara, Matsumoto, Drinfel’d). There is an injection GQ ↪→ ĜT
compatible with the action of GQ on the outer automorphism group of the étale
fundamental group of P1

Q
\ {0, 1, ∞}.

More precisely, there is a ĜT-action11 on the genus 0 tower {M0,m}m 11 Explicitly given for F = (λ, f ) on the
classical braid generators σi by

F(σi) = f−1(σ2
i ), yi) · σλ

i · f (σ2
i ), yi).

that extends and is compatible with the Galois one on M0,4 ≃ P1 \
{0, 1, ∞}.

The central conjecture of Grothendieck-Teichmüller theory is that this
injective map is actually an isomorphism, as seen in the first paragraph
of a survey12 on the open problems in this theory. 12 Pierre Lochak and Leila Schneps. Open

problems in Grothendieck-Teichmüller
theory. In Problems on mapping class
groups and related topics, volume 74 of Proc.
Sympos. Pure Math., pages 165–186. Amer.
Math. Soc., Providence, RI, 2006

From Geometric Galois Actions to ĜT

The main way to obtain geometric Galois actions from algebraic geom-
etry is through the étale homotopy exact sequence. For an algebraic
variety X over a field k it is the short exact sequence13 13 The notation Xk is for the base change

of X to k, also note that Gk is the étale
fundamental group of Spec k.1 πet

1 (Xk, x) πet
1 (X, x) Gk 1.

Remark that, by conjugation on the middle term, such an exact
sequence yields a map14 14 Note that, as before, we can make pro-Σ

variants of this action by considering the
maximal pro-Σ quotient of πet

1 (Xk). In
the case of abelian varieties and Σ = {ℓ}
we recover the usual Galois action on the
ℓ-adic Tate module.

φX : Gk −→ Out πet
1 (Xk, x)

which is the geometric Galois action we were looking for.

If k is a number field, by analytification, we obtain that πet
1 (Xk) is the

profinite completion of the topological fundamental group π1(X(C)).
From this we deduce that for X = P1

Q
\ {0, 1, ∞} we have πet

1 (Xk) = F̂2.
The choice of a tangential basepoints15 provides a lift of the outer action 15 For a quick, in context, definition, a

tangential basepoint on P1 \ {0, 1, ∞} is
a map Q(t) → Q((T)) where t denotes a
choice of variable for the function field of
P1.

into an actual action of GQ on F̂2. We obtain the following.

Theorem 3. The map GQ → Aut F̂2 is injective. Any σ ∈ GQ gives rise to
an element of Aut F̂2 defines as follows16: 16 Here, χ is the cyclotomic character

GQ → Ẑ×.
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• x 7→ xχ(σ)

• y 7→ fσ(x, y)yχ(σ) f−1
σ (x, y)

such that (χ(σ), fσ(x, y)) belongs to ĜT. Moreover, the map GQ → ĜT
given by σ 7→ (χ(σ), fσ) is injective.

The proof relies essentially on the use of Deligne’s tangential base-
points17 for P1 \ {0, 1, ∞}. In particular, one has to relate the actions 17 These tangential basepoints are de-

noted i⃗ j where i, j ∈ {0, 1, ∞}. For ex-
ample, 1⃗0 is defined by T 7→ 1 − T

coming from the different tangential points by using analytic continua-
tion along certain paths18,19.

18 For reference, one of them is Deligne’s
“le droit chemin” : p : 0⃗1 → 1⃗0.
19 Yasutaka Ihara. On the embedding of
Gal(Q/Q) into ĜT. In The Grothendieck
theory of dessins d’enfants (Luminy, 1993),
volume 200 of London Math. Soc. Lec-
ture Note Ser., pages 289–321. Cambridge
Univ. Press, Cambridge, 1994. With an
appendix: the action of the absolute Ga-
lois group on the moduli space of spheres
with four marked points by Michel Em-
salem and Pierre Lochak

Interlude on the log-geometry of curves

Log-geometry gives a functorial framework in order to work with
stable curves and their moduli spaces. Let Mg,m be the moduli space of
smooth proper curves with m marked points and genus g such that20

20 This so called hyperbolicity condition is
equivalent for curve to have a non-abelian
or anabelian (i.e, far from abelian) étale
fundamental group

2g − 2 + m ≥ 1. The compactification Mg,m of Mg,m is the moduli
space of stable curves of genus g and m marked points21. These curves

21 These moduli spaces have the structure
of Deligne-Mumford stacks over Q.

have at most nodal singularities. On the other hand, there is a notion of
smooth log-curves to which is attached a corresponding moduli space
LMg,m. The main result of F. Kato22 we are concerned with is the

22 Fumiharu Kato. Log smooth deforma-
tion and moduli of log smooth curves.
Internat. J. Math., 11(2):215–232, 2000

isomorphism23

23 It is, at least, clear from this isomor-
phism that studying log-curves is already
equivalent to studying hyperbolic curves
and gives a different viewpoint on those
objects.

LMg,m ≃ Mg,m
log

where Mg,m is given a log-structure which we will now introduce.

The notion of a log-scheme is that of a scheme X equipped with
a sheaf of monoids24 MX which we call log-structure. It is required,

24 It is important that this is a sheaf on the
étale site Xet and not just a regular sheaf
on the topological space of X.

by the definition, that there is a map of monoids25 α : MX → OX

25 Here, OX is considered with the
monoidal structure from multiplication.

which verifies that26 α−1(O×
X ) ≃ O×

X . It is thus clear that we have an

26 The notion of pre-log structure is ob-
tained by forgetting this last condition

inclusion of categories from the category of schemes to the category
of log-schemes by considering the trivial log-structure on X given by
MX = O×

X . A thorough treatment of log-structures can be found in
“Logarithmic structures of Fontaine-Illusie” by K. Kato27.

27 Kazuya Kato. Logarithmic structures
of Fontaine-Illusie. In Algebraic analy-
sis, geometry, and number theory (Baltimore,
MD, 1988), pages 191–224. Johns Hop-
kins Univ. Press, Baltimore, MD, 1989

Exemple 4. There are four basic examples of log-schemes.

(i) For a scheme X, the trivial log-structure is given by the inclusion
α : O×

X ↪→ OX .

(ii) For X a regular scheme with normal crossings divisor D ⊂ X and
j : X \ D ↪→ X the corresponding open immersion α : OX ∩ j∗O×

X\D
defines a log-structure on X. The sheaf MX = OX ∩ j∗O×

X\D can be

described locally by the set {g ∈ OX | ∀x ∈ X \ D, gx ∈ O×
X,x}.
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(iii) For a field k there is a pre-log structure given by

N −→ k
a 7−→ 0a

for which the associated log-structure is given by N ⊕ k× → k.

(iv) For the nodal curve Spec k[x, y]/(xy) there is a pre-log structure
given by

N2 −→ k[x, y]/(xy)
(a, b) 7−→ xayb

The property of log-smoothness is given as follows.

Definition 5. A morphism of log-schemes f : X → Y is said to be
smooth if it is locally of finite presentation and if for every closed
immersion of affine log-schemes T → T′ defined by a square zero ideal
such that the following square commutes

T X

T′ Y

there is, étale-locally28, a map of log-schemes T′ → X (represented by 28 At first glance, the second part of this
definition seems to be the identical to the
definition of formal smoothness, but here
the existence of the lift is only local for the
étale topology, which is a much weaker
condition.

the dashed arrow) that makes the diagram commutes.

It can be shown that the nodal curve Spec k[x, y]/(xy) with its log-
structure defined before is log-smooth using the criterion29 given by

29 Kazuya Kato. Logarithmic structures
of Fontaine-Illusie. In Algebraic analy-
sis, geometry, and number theory (Baltimore,
MD, 1988), pages 191–224. Johns Hop-
kins Univ. Press, Baltimore, MD, 1989

Theorem 3.5 of ibid. A much more general statement is that every nodal
curve can be equipped with a structure of a log-smooth curve.

Definition 6. A log-curve over a log-scheme S is a log-smooth and
integral map of fine and saturated30 log-schemes f : X → S such that 30 This can be seen as an analogue of the

notion of coherent module for the log-
structure.

the scheme theoretic geometric fibers of f are reduced and connected
curves.

A structure result for log-curves over fields is as follows.

Theorem 7. Let k be a separably closed field and X a log-curve over k. Then

1. The underlying scheme of X has at most ordinary double points31. 31 That is étale-locally given by the nodal
curve k[x, y]/(xy).

2. There exists distinct points s1, . . . , sn of the smooth locus of X such that

MX ≃ Zr1 ⊕ · · · ⊕ Zrm ⊕ Ns1 ⊕ · · · ⊕ Nsn

where {r1, . . . , rm} is the set of double points of X.

On the other hand F. Kato shows, as alluded before, that there is a
canonical structure of log-curve for stable curves. From this we can
equip Mg,m with a canonical structure of a log-stack and prove the

desired isomorphism LMg,m ≃ Mg,m
log

.



“atelier de géométrie arithmétique” 5

Some tools of anabelian geometry

For X an algebraic variety over a field k recall that we have the funda-
mental exact sequence

1 πet
1 (Xk) πet

1 (X) Gk 1.

The basic problem of anabelian geometry is to understand how to
recover X from the profinite group πet

1 (Xk) equipped with the Gk-outer
action coming from the exact sequence. Grothendieck famously stated32 32 Alexander Grothendieck. Brief an G.

Faltings. In Geometric Galois actions, 1,
volume 242 of London Math. Soc. Lecture
Note Ser., pages 49–58. Cambridge Univ.
Press, Cambridge, 1997a. With an En-
glish translation on pp. 285–293

that it should be possible to recover X from this group theoretical data
in the case X is “anabelian” without giving a proper definition of this
term33.

33 However, he gave as examples of an-
abelian spaces the three following type of
spaces : hyperbolic curves, configuration
spaces of points over hyperbolic curves
and moduli spaces of hyperbolic curves.

More precisely, for anabelian schemes X1 and X2 over k we are
looking for a natural bijection34

34 This, which was known as the
Grothendieck conjecture for hyperbolic
curves have been resolved in the 90’s by
the work of H. Nakamura (genus 0 curves
and reconstruction of cuspidal inertia
subgroups), A. Tamagawa (affine curves)
and S. Mochizuki (for proper curves).

IsomSch/k(X1, X2) ≃ IsomGk (π1(X1), π1(X2))/conj.

Anabelian reconstruction of data for hyperbolic curves

Let X be a hyperbolic curve over a number field k. That is X is an
open subscheme of a proper smooth curve X and the divisor X \ X is
of degree r such that 2g − 2 + r ≥ 1 where g is the genus of X. Our
goal in this section is to explain how to recover (g, r) from the group
theoretic data of π1(Xk) with its Gk-action.

Let us denote by Πg,r the group given by the presentation

⟨a1, . . . , ag, b1, . . . , bg, s1, . . . , sr | ∏
i
[ai, bi]∏

i
si = 1⟩.

Then π1(Xk) is the profinite completion of Πg,r and its abelianization
is given by Ẑ2g+r−ϵ where ϵ = 0 if r = 0 and ϵ = 1 otherwise. Then by
considering the action of the Frobenius at a place of good reduction of
X we can recover r as the rank of the subspace where the Frobenius
acts by weight 2, then g can be recovered subsequently. More precisely,
for a curve X over a finite field k, one can recover r by the equality
r = Card{a ∈ A | |a| = Card k} where A is the set of roots of the
characteristic polynomial of the Frobenius acting on the abelianization
of π1(Xk). The genus g is recovered as the cardinality of the set {a ∈
A | |a| = (Card k)

1
2 }.

S. Mochizuki, see35 lemma 1.3.8 and 1.3.9 of “The absolute anabelian 35 Shinichi Mochizuki. The absolute an-
abelian geometry of hyperbolic curves. In
Galois theory and modular forms, volume 11

of Dev. Math., pages 77–122. Kluwer
Acad. Publ., Boston, MA, 2004

geometry of hyperbolic curves”, extended these results to the setting
of p-adic fields for absolute anabelian geometry. One example is the
following theorem.
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Theorem 8. Let X1/K1 and X2/K2 be hyperbolic curves over p-adic fields
with genus g1, g2 and r1, r2 marked points. If there is an isomorphism
α : π1(X1) → π1(X2) then K1 and K2 have isomorphic residue fields and
(g1, r1) = (g2, r2).

The introduction of log-geometry

We now consider hyperbolic curves over an algebraically closed field k
equipped with the log-structure that was defined previously. For such
a hyperbolic curve X, let the n-th configuration space be defined as

Xn = X ×k X · · · ×k X \ ∆

where ∆ is the weak diagonals in the product. For the rest of these notes
the references will be with regards to “Group- theoreticity of numerical
invariants and distinguished subgroups of configuration space groups”
by Hoshi, Minamide and Mochizuki36. 36 Yuichiro Hoshi, Arata Minamide,

and Shinichi Mochizuki. Group-
theoreticity of numerical invariants and
distinguished subgroups of configuration
space groups. Kodai Math. J., 45(3):295–
348, 2022

Definition 9 (Definition 1.1 of ibid). A point xn ∈ Xn is said to be
log-full if for every geometric point x over xn we have that

dimOX,x/I(x, MX) = 0

where I(x, MX) is the ideal generated by the image of MX minus O×
X,x

in OX,x.

For our purpose the interest of log-full points comes from the fact
that, for such a point xn ∈ Xn, the kernel of the natural map of log-
fundamental groups37 37 There is an analogue of the fundamen-

tal exact sequence for log-schemes and
their log-fundamental groups which is
defined through the category of log-étale
covers in the same way as the étale fun-
damental group.

π
log
1 (xn) → π

log
1 (Spec k)

is isomorphic38 to Ẑn. This can be used to recover n from the group
38 See Proposition 1.3 of ibid.theoretic data39 of the étale fundamental group π1(Xn). Precisely for ℓ
39 Note that here we work over an alge-
braically closed field and we do not have
access to the Galois action as before.

a prime number different from the characteristic of k, the integer n is
given40 by

40 See Theorem 1.6 of ibid.
n = max{s ∈ N | ∃H ⊂ πℓ

1(Xn) closed and H ≃ Zs
ℓ}.

From this, Hoshi, Minamide and Mochizuki show that one can
reconstruct the map π1(Xn) → π1(X) and, when r ≥ 1, and one can
also recover (g, r) by the formula41 41 A complete reconstruction procedure

for every hyperbolic (g, r) is given in The-
orem 2.5 of ibid.g =

1
2

rkZℓ
πℓ

1(X)ab − rkZℓ
Ker(πℓ

1(X)ab → πℓ
1(X)ab).

A new description of ĜT through combinatorial anabelian geome-
try

Consider42 X = P1 \ {0, 1, ∞}, Xn the n-th configuration space of X 42 Most of the anabelian results presented
by Hoshi Minamide and Mochizuki work
with any hyperbolic curve but for the
sake of clarity we will restrict ourselves
to this case in these notes.
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as before and denote by Πn its étale fundamental group. In order to
understand the remarkable isomorphism

ĜT ×S5 ≃ Out Π2

we first need to recall some results regarding the moduli spaces of
curves of genus 0, the configuration spaces Xn and ĜT. First of all, for
all n ≥ 0 we have the following isomorphism43 43 By convention X0 is a point.

Xn ≃ M0,n+3.

From this isomorphism we obtain a natural faithful action of Sn+3

on Xn by its action on the set of marked points44. This provides us 44 This is specific to our choice of X, for X
of type (g, r) /∈ {(0, 3), (1, 1)} we should
only consider the standard action of Sn
on Xn.

with a natural inclusion Sn+3 ↪→ Out Π1(Xn). We also define the fiber
subgroups of Πn to be the kernels of the standard projections Xn → Xm

for any choice of m ≤ n. By choosing the projections that forgets
the factors in canonical order we get a so called standard sequence of
surjections

Xn → Xn−1 → · · · → Xm → · · · → X1 → X0

from which we obtain a filtration of Πn by fiber subgroups (Ki)1∈{0,...,n},
called the standard fibration on Πn

{1} = Kn ⊂ Kn−1 ⊂ · · · ⊂ Km ⊂ · · · ⊂ K1 ⊂ K0 = Πn.

Note that by the hyperbolicity condition we also have that quotients
of subsequent terms Km+1/Km in the filtration are isomorphic to the
fundamental group of a curve of type (0, m + 3). There is thus a
well defined notion of cuspidal inertia subgroups for those45. Now, 45 These are the subgroups generated

by the loops around the marked points
broadly speaking.

we will define the subgroup OutFCS(Πn) of FCS-outer automorphism
of Πn to be composed of the automorphisms of the following types
(simultaneously)46. 46 See Definition 2.7 of ibid.

(F) The fiber-admissible automorphisms, that is the automorphisms that
fixes the fiber subgroups, i.e. α(H) = H for every fiber subgroup
H ⊂ Πn.

(C) The cusp-admissible automorphisms, that is the automorphisms that
preserves the standard filtration and induces a bijection between
the set of cuspidal inertial subgroups of subsequent quotients of the
standard filtration.

(S) The automorphisms which commutes with the action of Sn+3, i.e.
elements of the centralizer ZSn+3(Out Πn).

We can moreover reformulate47 the classical result of Harbater and 47 In the original paper, the notation used
is Out♯n.Schneps48, that we have the following isomorphisms, for n ≥ 2 :
48 David Harbater and Leila Schneps.
Fundamental groups of moduli and the
Grothendieck-Teichmüller group. Trans.
Amer. Math. Soc., 352(7):3117–3148, 2000
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ĜT ≃ OutFCS(Πn) ≃ · · · ≃ OutFCS(Π2) ↪→ OutFCS(Π1).

Now, Hoshi, Minamide and Mochizuki introduced the notion49 of 49 See Definition 2.1 of ibid.
generalized fiber subgroup of Πn which are preserved50 by any group 50 This notion is specially introduced to

recover this preservation result in the
case (g, r) ∈ {(0, 3), (1, 1)} as in the other
cases the fiber subgroups are already pre-
served group theoretically. This group
theoriticity result is where a heavy part
of the anabelian techniques discussed in
the previous section lies.

theoretic automorphism of Πn. Moreover, by considering the subgroup
OutgF Πn of gF-admissible automorphisms, that is the automorphisms
that fixes the generalized fiber subgroups, one obtains51 an exact se-

51 See Corollary 2.6 of ibid.

quence

1 OutgF Πn Out Πn Sn+3 1.

This exact sequence results from the preservation of the subset of
cardinality n + 3 of generalized fiber subgroups of Πn of length52 equal 52 The length of a generalized fiber sub-

group is related to the number of factors
removed by the projection defining it.

to 1. Furthermore, one obtains that the natural injection Sn+3 ↪→
Out Πn is a splitting of this sequence and that it actually gives a direct
product decomposition

OutgF Πn ×Sn+3 ≃ Out Πn.

The last step, that is technically involved, to obtain our desired
isomorphism, is to see that OutgF Πn is equal to OutFCS Πn and use the
result of Harbater and Schneps. By specializing to n = 2, we get53 53 See Corollary 2.8 of ibid.

ĜT ×S5 ≃ Out Π2.

Some additional developments54 on the construction of certain closed 54 Yuichiro Hoshi, Shinichi Mochizuki,
and Shota Tsujimura. Combinatorial
construction of the absolute galois group
of the field of rational numbers. RIMS
preprint, 1935:98, 2020

subgroups BGT ⊂ ĜT, potentially isomorphic to ĜT, provides a com-
binatorial model QBGT of Q give a new insight to the classical question:
can we expect GQ ≃ ĜT?
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