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By patching and gluing G-covers over a complete discretely valued
field Harbater resolved the Regular Inverse Galois Problem for such
fields3 and proved the Abhyankar’s conjecture4. A framework for patch- 3 David Harbater. Galois coverings of the

arithmetic line. In Number theory (New
York, 1984–1985), volume 1240 of Lecture
Notes in Math., pages 165–195. Springer,
Berlin, 1987

4 David Harbater. Abhyankar’s conjec-
ture on Galois groups over curves. Invent.
Math., 117(1):1–25, 1994

ing over fields is introduced in [HH10]5, which is further developed

5 David Harbater and Julia Hartmann.
Patching over fields. Israel J. Math., 176:
61–107, 2010

in [HHK09]6 to produce local-global principles and various arithmetic

6 David Harbater, Julia Hartmann, and
Daniel Krashen. Applications of patch-
ing to quadratic forms and central simple
algebras. Invent. Math., 178(2):231–263,
2009

results for function fields of curves over complete discretely valued fields.
This method is then improved in [Me19]7 using Berkovic analytification.

7 Vlerë Mehmeti. Patching over
Berkovich curves and quadratic forms.
Compos. Math., 155(12):2399–2438, 2019

The goal of this Atelier was to give a practical understanding of the
patching method as given by these authors and how it leads to some
arithmetic results. These notes give an overview of the work done during
this one-day event, see the program8 for more context and the abstracts

8 The program and all the information
regarding this session of the Atelier can
be found here : AHGT website

of the talks.
To reflect the activity of the Atelier we include the original statement of the

cited theorems.

Patching over fields

The framework - Problem and solution

The formal framework for patching over fields, in the simple case of
four fields9, is as follows. Let F1, F2 and F0 be fields that form an inverse 9 In general one can consider arbitrary

large finite inverse system of fields.system F , i.e. there are injective maps F1 ↪→ F0 and F2 ↪→ F0. The limit
of this system is a field F given by the intersection of the images of F1

and F2 in F0.

Definition 1. A patching problem for F is then an inverse system of
finite dimensional vector spaces V1, V2 and V0 over the respective fields
with Fi-linear maps Vi → V0 which become isomorphisms as F0-linear
maps after base change on the source.

Patching problems form a category with the adequate choice of
morphisms10. It should be noted that we can consider patching prob- 10 With our four field example this cat-

egory is equivalent to the 2-fiber prod-
uct of the categories of finite dimensional
spaces over the respective fields.

lems with added structure, for instance algebras or quadratic forms.
For a finite dimensional vector space V over F the base change func-
tors give rise to a canonical patching problem, i.e. by denoting Vec K
the category of finite dimensional K-vector spaces there is a functor
β : Vec F → Vec F1 ×Vec F0 Vec F2.

https://ahgt.math.cnrs.fr/activities/ateliers/AGA23-patching/
https://ahgt.math.cnrs.fr/activities/ateliers/AGA23-patching/
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A patching problem P is said to have a solution when it is in
the image of the functor β, the solution being the finite dimensional
vector space V over F such that β(V) ≃ P. The fundamental result
about patching over fields, that provides existence of solutions is the
following11. 11 David Harbater and Julia Hartmann.

Patching over fields. Israel J. Math., 176:
61–107, 2010Theorem 2 ([HH10], Prop. 2.1). Let F1, F2 and F0 be fields such that F1 ⊂ F0

and F2 ⊂ F0. Let F = F1 ∩ F2. Let

β : Vec F −→ Vec F1 ×Vec F0 Vec F2

be the natural map given by base change. Then the following statements are
equivalent:

(1) β is an equivalence of categories.

(2) For every positive integer n and every matrix A ∈ GLn(F0) there exist
matrices Ai ∈ GLn(Fi) such that A = A1 A2.

Moreover, if these conditions hold, then the inverse of β (up to isomorphism)
is given on objects by taking the fibre product.

The main idea from this theorem is that solving patching problems
is the same as a matrix decomposition property12. 12 If we consider patching problems with

added structure the equivalent matrix de-
composition result should be given for a
suitable linear group, such as O(q) for a
quadratic form.

Patching over function fields of curves

The fields for which the framework of the previous section is applied ap-
pear from a geometrical context. To be precise we consider a smooth13 13 The smoothness hypothesis can, and

should be weakened to normal, irre-
ducible for the applications, nevertheless
we will assume it here.

projective curve C over a complete discrete valuation ring T with uni-
formizer t and residue field k. By the smoothness hypothesis the special
fiber Xk of the curve is irreducible. Let η be its generic point.

(t)

X Spec T

η x

U

Figure 1: Curve X with generic and spe-
cial fiber over Spec T

For a subset U of Xk we define a field FU in the following way.
Consider the ring RU of regular functions on U, that is a subring of
OX,η and its t-adic completion R̂U . This ring is a domain and we let
FU be its fraction field. The basic14 patching result in this setting is the 14 There are numerous variants of this re-

sult when considering different subsets
of Xk and different constructions of fields
with regards to these subsets.

following15.

15 David Harbater and Julia Hartmann.
Patching over fields. Israel J. Math., 176:
61–107, 2010

Theorem 3 ([HH10], Theo. 4.12). Let T be a complete discrete valuation
ring and let X̂ be a smooth connected projective T-curve with closed fiber X.
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Let U1, U2 be subsets of X. Then the base change functor

Vec(FU1∪U2) −→ Vec(FU1)×Vec(FU1∩U2 )
Vec(FU2)

is an equivalence of categories.

From patching to local-global principles through linear algebraic
groups

The local-global principles obtained from the patching theorems such
as Theorem 3 concern varieties over function field of curves. We recover
rational points from the existence of points over the different fields FU

16, 16 In the classical setting the base field is
Q and the local fields involved are the
completions (Qp)p prime and R.

as given by the following local-global principle for certain homogeneous
spaces17,18.

17 The apparition of linear algebraic
groups in the picture should not be sur-
prising in the light of the matrix decom-
position property of Theorem 2.
18 David Harbater, Julia Hartmann, and
Daniel Krashen. Applications of patch-
ing to quadratic forms and central simple
algebras. Invent. Math., 178(2):231–263,
2009

Theorem 4 ([HHK09], Theo 3.7). Let T be a complete discretely valued ring
with residue field k and X an irreducible projective T-curve with function field
F. Assume given a finite map f : X → P1

T such that P = f−1(∞) contains
all points at which distinct irreducible components of the closed fibre of X meet,
and denote by U be the collection of irreducible components U of f−1(A1

k).
For G be a rational connected linear algebraic group over F that acts transi-

tively on the points of an F-variety H, we have that H(F) ̸= ∅ if and only if
H(Fp) = ∅ for all p ∈ P and H(FU) ̸= ∅ for every U ∈ U .

From the patching point of view we should look at the variety H over
F as a moduli space for some algebraic structure and the linear algebraic
group acting on it as the automorphism group of such structure.

A sketch of the proof, in the case of 4 fields, can be given as follows.
We start with points xU and xp with value in the fields FU and Fp and
an overfield F0. The transitivity of the action of the F0-points make
it such that gxU = xp for some element g ∈ G(F0)

19. The matrix 19 This should be seen as the isomorphism
condition to set up our patching problem.decomposition result20 gives that g = gp · gU so that by taking the
20 This step should be seen as having a
solution to our patching problem.elements gU xU and g−1

p xp and an affine open Spec A containing them
both we get a commutative diagram

FU

A F0

Fp

Thus a map from A to the limit F of the inverse system given by FU , Fp

and F0. This map gives the F-point of H that we sought.
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Some applications to quadratic forms

Let us consider a finite dimensional vector space E equipped with a
quadratic form q over the function field F of a curve as before. In order
to apply Theorem 4 to this situation21 we should first note that the 21 The variety H here is the one defined by

the homogeneous polynomial defining q.linear algebraic group we consider is O(q). The transitivity condition is
then given by an application of Witt’s extension theorem. We thus get
the following result22. 22 David Harbater, Julia Hartmann, and

Daniel Krashen. Applications of patch-
ing to quadratic forms and central simple
algebras. Invent. Math., 178(2):231–263,
2009

Theorem 5 ([HHK09], Theo 4.2). In the context of Theorem 4, suppose q is
a quadratic form of dimension unequal to 2, such that qFξ

is isotropic for each
ξ ∈ P ∪ U . Then q is isotropic.

Going further, the patching method is applied to compute the u and
strong-u invariant of such fields23. 23 Vlerë Mehmeti. Patching over

Berkovich curves and quadratic forms.
Compos. Math., 155(12):2399–2438, 2019Definition 6 (Me19). Let K be a field.

1. [Kaplansky] The u-invariant of K, denoted by u(K), is the maximal
dimension of anisotropic quadratic forms over K. We say that u(K) =
∞ if there exists anisotropic quadratic forms of arbitrarily large
dimension.

2. [HHK] The strong u-invariant of K, denoted by us(K), is the smallest
real number m such that:

• u(E) ≤ m for all finite field extensions E/K;

• 1
2 u(E) ≤ m for all finitely generated field extensions E/K of tran-
scendence degree 1.

We say that us(K) = ∞ if there exists such fields extensions E of
arbitrarily large u-invariant.

The computation of u-invariants has been of particular interest in the
algebraic theory of quadratic forms24. Indeed to paraphrase Izhbodin25, 24 It is an important step towards the clas-

sical Hasse-Minkowski theorem that the
u-invariant of p-adic fields is 4.
25 Oleg T. Izhboldin. Fields of u-invariant
9. Ann. of Math. (2), 154(3):529–587, 2001

it is a fact that many questions about quadratic forms over a field K can
be reduced to their anisotropic part. In this sense u(K) is a fundamental
measure of the complexity of quadratic forms over K. Computing this
invariant has been proven very difficult. For instance a conjecture of
Kaplansky26, that held for over 30 years, was that u(K) is always a 26 The original definition of u-invariant

appears in the context of this conjecture
made in 1953; no precise reference seem
to exist.

power of 2. We do not give a counter-example here, but fields with odd
u-invariant exists, for an example see ibid.

The theoretical result that computes u-invariants by the
patching technique we have discussed, is as follows27. 27 David Harbater, Julia Hartmann, and

Daniel Krashen. Applications of patch-
ing to quadratic forms and central simple
algebras. Invent. Math., 178(2):231–263,
2009

Theorem 7 ([HHK09], 4.10). Let K be a complete discretely valued field
whose residue field k has characteristic unequal to 2. Then us(K) = 2us(k).
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It leads to the some computations of u-invariants, for p an odd prime
and F a one variable function field over K:

• Let K be an m-local field. If k is algebraically closed then u(F) = 2m+1.
If k is finite then u(F) = 2m+2.

• For K/Qp a finite extension, one has u(F) = 8.

• For K = Qp((t)), one has u(F) = 16.

• If k is algebraically closed or finite, then u(Frac(k[[x, t]])) = 4 and
u(Frac(k[x][[t]])) = 8.

The introduction of Berkovic analytification

By using Berkovic analytification, Mehmeti removes the discretely val-
ued hypothesis on the base field k, which previously was the fraction
field of the discretely valued ring T. She makes use of the structure
of Berkovic spaces by introducing nice covers of curves and parity func-
tions28 for such covers29. 28 See Definition 2.1 and 2.18 of [Me19]

for details.
29 Vlerë Mehmeti. Patching over
Berkovich curves and quadratic forms.
Compos. Math., 155(12):2399–2438, 2019

Theorem 8 ([Me19]). Let k be a complete non-trivially valued ultrametric
field. Let C be a normal irreducible projective k-algebraic curve. Denote by
F the function field of C. Let X be an F-variety and G a connected rational
algebraic group acting strongly transitively on X.

Let V(F) be the set of all non-trivial rank 1 valuations on F which either
extend the valuation on k or are trivial when restricted to k.

Denote by Can the Berkovic analytification of C, so that F = M(Can),
where M denotes the sheaf of meromorphic functions on Can. Then the
following local-global principles hold.

• X(F) ̸= ∅ ⇐⇒ X(Mx) ̸= ∅ for all x ∈ Can.

• If F is a perfect field or X is a smooth variety, then

X(F) ̸= ∅ ⇐⇒ X(Fv) ̸= ∅ for all v ∈ V(F),

where Fv denotes the completion of F with respect to v.

It should be mentioned that Mehmeti first proves the theorem with
the added condition that

√
|k×| = |k×| ⊗Z Q is distinct from R>0. In

particular, type 3 points, that is points x on the analytic curve Xan such
that the rank of the quotient of value groups |H(x)×|/|k×| is 1, play an
important role30. The condition is then removed, which allows for no 30 This also tells that this method does not

apply in the framework of rigid-analytic
spaces.

type 3 points to exist, by using model theory.
Let us finally remark that this patching theorem recovers Theorem 4

when applied in the same setting. It also provides new bounds for the
u-invariants of complete valued non archimedean fields k with rank
n ∈ N \ {0} valuations.
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